skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashley M Heers"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Birds are well known for their ability to fly, and flight-capable adult birds have many anatomical specializations for meeting the demands of aerial locomotion. Juvenile birds in altricial species typically acquire these specializations close to fledging and leave the nest with some flight capability. In contrast, juveniles in most precocial species begin navigating their environment with rudimentary anatomies and may not develop full-sized wings or musculoskeletal apparatuses for several months. This manuscript explores how juvenile birds achieve high levels of locomotor performance in the absence of flight specializations, by synthesizing work on two groups of precocial birds with very different developmental strategies. Galliforms like the Chukar Partridge (Alectoris chukar) have early wing development and are capable of flight within weeks. Compared with adults, juvenile chukars have less aerodynamically effective feathers and smaller muscles but compensate through anatomical, kinematic, and behavioral mechanisms. In contrast, waterfowl have delayed wing development and initially rely on leg-based locomotion. In Mallards (Anas platyrhynchos) and their domesticated derivatives, leg investment and performance peak early in ontogeny, but then decline when wings develop. Chukar and mallard juveniles thus rely on different mechanisms for negotiating their surroundings in the absence of flight specializations. In conjunction with work in other animals, these patterns indicate that juveniles with developing locomotor apparatuses can achieve surprisingly high levels of locomotor performance through a variety of compensatory mechanisms. 
    more » « less
  2. Avian takeoff requires peak pectoralis muscle power to generate sufficient aerodynamic force during the downstroke. Subsequently the much smaller supracoracoideus recovers the wing during the upstroke. How the pectoralis work loop is tuned to power flight is unclear. We integrate wingbeat-resolved muscle, kinematic and aerodynamic recordings in vivo with a new mathematical model to disentangle how the pectoralis muscle overcomes wing inertia and generates aerodynamic force during takeoff in doves. Doves reduce the angle of attack of their wing mid-downstroke to efficiently generate aerodynamic force, resulting in an aerodynamic power dip, that allows transferring excess pectoralis power into tensioning the supracoracoideus tendon to assist the upstroke—improving the pectoralis work loop efficiency simultaneously. Integrating extant bird data, our model shows how the pectoralis of birds with faster wingtip speed need to generate proportionally more power. Finally, birds with disproportionally larger wing inertia need to activate the pectoralis earlier to tune their downstroke. 
    more » « less
  3. From the symposium “Pathways to adulthood: environmental, developmental, and evolutionary influences on the ontogeny of form and function" and "Biology at birth: the role of infancy in providing the foundation for lifetime success” presented at the annual meeting of the Society for Integrative and Comparative Biology annual meeting January 3-7, 2023, virtual January 16–March 31, 2023. 
    more » « less